Skip to main content

extract.extractors

MaterializedEmptyList Objects

class MaterializedEmptyList(List[Any])

[view_source]

A list variant that will materialize tables even if empty list was yielded

materialize_schema_item

def materialize_schema_item() -> MaterializedEmptyList

[view_source]

Yield this to materialize schema in the destination, even if there's no data.

Extractor Objects

class Extractor()

[view_source]

item_format

@staticmethod
def item_format(items: TDataItems) -> Optional[TLoaderFileFormat]

[view_source]

Detect the loader file format of the data items based on type. Currently this is either 'arrow' or 'puae-jsonl'

Returns:

The loader file format or None if if can't be detected.

write_items

def write_items(resource: DltResource, items: TDataItems, meta: Any) -> None

[view_source]

Write items to resource optionally computing table schemas and revalidating/filtering data

This demo works on codespaces. Codespaces is a development environment available for free to anyone with a Github account. You'll be asked to fork the demo repository and from there the README guides you with further steps.
The demo uses the Continue VSCode extension.

Off to codespaces!

DHelp

Ask a question

Welcome to "Codex Central", your next-gen help center, driven by OpenAI's GPT-4 model. It's more than just a forum or a FAQ hub – it's a dynamic knowledge base where coders can find AI-assisted solutions to their pressing problems. With GPT-4's powerful comprehension and predictive abilities, Codex Central provides instantaneous issue resolution, insightful debugging, and personalized guidance. Get your code running smoothly with the unparalleled support at Codex Central - coding help reimagined with AI prowess.